SYNTHESIS OF OXAZOLIDIN-2-ONES PHOSPHONATES DERIVATIVES: TOXIC EFFECT ON PARAMECIUM SPECIES

Souad Ouarna1*, Berrebbah Houria2, Hacène Ktir1, Aicha Amira1, Malika Berredjem1 and Nour-Eddine Aouf1

1Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Sciences Faculty, Chemistry Department. Badji Mokhtar, Annaba University, Box-12, Algeria
2Laboratory of Cell Toxicology, General Direction of Scientific Research and Technological Development, Algeria

*E-mail: souad_ouarna@yahoo.fr

ABSTRACT
A new series of substituted oxazolidin-2-ones containing chloroacetyl and phosphonate groups have been synthesized and their in vitro cytotoxicity activities were evaluated against Paramecium sp at different parameters. Their synthesis were easily carried out starting from available oxazolidin-2-ones by chloroacetylation reaction following by introduction of phosphonate group using P(OEt)3 via Arbuzov reaction. Toxicological impact of these synthetic compounds showed promising results.

Keywords: Heterocyclic, Oxazolidin-2-one, Chloroacetylation, Arbuzov Reaction, Toxicology Paramecium

INTRODUCTION
Heterocyclic compounds are a very interesting class for organic synthesis because of their diverse and potent biological properties1. Chiral oxazolidin-2-ones derivatives, in particular, have been described to exhibit a wide range of biological properties2. Also, they have been widely used as chiral auxiliaries in many asymmetric synthesis3, as protecting groups in organic synthesis4, as ligands for metal catalysts5, as antimicrobial agents6-7, and as building blocks in polymers. In the field of bioactive molecules, organophosphorus compounds have received a great deal of attention8. The introduction of phosphonate group in simple ring such as Aziridine9, Pyrroles10 and Pyrazole11 could be very interesting because they can be functional substrates for the preparation of biologically active compounds. Phosphonate analogs possess a non-hydrolysable C-P band in place of labile O-P band in organophosphate esters, and such present this possibility of antimetabolic activity12. In the spite of their importance, only a few examples of acyloxazolidinone-phosphonate derivatives could be found in the literature13-16. More recently, we described the amidophosphonates17, modified sulfamides and cyclosulfamides containing phosphonate moieties18. In the continuity of this research, we report in this paper the synthesis and toxic effect of acyloxazolidin-2-ones phosphonate derivatives on Paramecium species: Growth kinetics.

EXPERIMENTAL
All reagents and solvents were of commercially quality and used without further purification. Melting points were determined in open capillary tubes on an Electro thermal apparatus and uncorrected. IR spectra were recorded on a Perkin-Elmer FT-600 spectrometer. Proton nuclear magnetic resonance was determined with a AC 250-MHz Bruker spectrometer using CDCl3 and DMSO-d6 as a solvent and TMS as an internal standard. Chemical shifts are reported in δ units (ppm). All coupling constants (J) are reported in Hertz. Multiplicity is indicated as s (singulet), d (doublet), t (triplet), m (multiplet) and combination of these signals. Elemental analysis was performed on a Perkin-Elmer 2400 C, H, N analyzer and values werewithin the acceptable limits of the calculated values. All reactions were monitored by TLC on silica Merck 60 F254 (Art. 5554) pre-coated aluminum plates and were developed by spraying with ninhydrin solution. Column chromatographies were performed on Merck silica gel (230-400 mesh)
RESULTS AND DISCUSSION

The chiral oxazolidinon-2-ones can be prepared in two steps starting from the corresponding (L) amino acids (Ala, Val, Leu, Phe), reduction with sodium borohydride, and cyclization using diethyl carbonate\(^\text{19}\). The starting chiral N-chloroaacetyl oxazolidin-2-ones (2a–2d) were easily prepared in excellent yield (80–90%) by treatment of the corresponding commercially available or easy accessible chiral oxazolidin-2-ones (1a-1d) with \(n\)-BuLi in (CH\(_2\)Cl\(_2\)) followed by chloroacetylation using chloroacetyl chloride. The structure of all different N-chloroaacetyloxazolidin-2-ones (2a-2d) were unambiguously confirmed by usual spectroscopic methods. The different \(^1\)H NMR spectra showed a signal (singulet) at 4.7-4.8 ppm corresponding to CH\(_2\)Cl protons. These compounds exhibited characteristic absorption in the IR spectrum with the absorption at 1718–1728 cm\(^{-1}\) (C=O)amide and showed band at 1782-1800 cm\(^{-1}\) (C=O)\(_\text{cyclic}\), suggesting its electrophilic ability\(^\text{20}\). The next step is phosphorylation of the (2a-2d) in the Michaelis–Arbuzov\(^\text{21}\) reaction conditions. The introduction of phosphonate moiety was performed using triethylphosphite. The reaction of chloroaacetyloxazolidin-2-ones with 2 equiv. of triethylphosphite at 130-150 \(^\circ\)C gave the corresponding phosphonates (3a-3d) after 10 hours of stirring (Scheme 1). The phosphonates derivatives were obtained with moderate yields 45-52 % after purification on column silica gel. The structure of the (3a-3d) was confirmed by \(^1\)H NMR and IR. The different \(^1\)H NMR showed two caracetic signal, triplet and quadruplet at 1-1.2 ppm and 4.2-4.4 ppm corresponding to ethyl groupement for phosphonate moiety. (3a-3d) exhibited characteristic absorption in the IR spectrum with the absorption at 1248-1262 cm\(^{-1}\) (P=O). Elemental (C,H,N) analysis indicated that the calculated and observed values were within the acceptable limits (±0.4%).

Scheme 1: Preparation of the (3a-3d)

A solution of oxazolidin-2-one (1 mmol) in dry dichloromethane (5mL) and \(n\)-BuLi (1.1 mmol) were taken in 50 ml round bottom flask under nitrogen, the solution is cooled to 0\(^\circ\)C over 30 min. A solution of chloroaacetyl chloride (2.2 mmol) in the same solvent was added drop wise at 0\(^\circ\)C for 60 min. the resulting mixture was then stirred at room temperature overnight. The organic layer was dried over anhydrous sodium sulfate and removed under reduced pressure. The crude product is purified by silica gel column chromatography eluted with (DCM-MeOH-9.5:0.5) to give white solid.

(S)-4-Methyl-N-chloroaacetyl-oxazolidin-2-one (2a)

Yield: 90%. White solid.m.p.76-78\(^\circ\)C. FT-IR (KBr, v cm\(^{-1}\)): 1665 (C=O amide), 1785 (C=O cyclic), 775 (C-Cl).\(^1\)H NMR (250 MHz, CDCl\(_3\), δ ppm): 1.60 (d, J = 6.1 Hz, 3H, CH\(_3\)), 4.35 (m, 2H, CH\(_2\)-CH\(_2\)), 4.55(s, 2H, CH\(_2\)-Cl), 4.30 (m, 1H, CH\(_2\)).\(^{13}\)C NMR (CDCl\(_3\), δ ppm): 169.2, 150.2, 70.0, 65.2, 56.1, 19.2. Calcd. for C\(_2\)H\(_4\)NO\(_3\)Cl: C, 40.56; H, 4.50; N, 7.88; Found: C, 40.29; H, 4.39; N, 7.80.

(S)-4-Isopropyl-N-chloroaacetyl-oxazolidin-2-one (2b)

Yield: 82 %. White solid, m.p. 98-100 \(^\circ\)C. FT-IR (KBr, v cm\(^{-1}\)): 1668 (C=O amide), 1790 (C=O cyclic), 700-800 (C-Cl).\(^1\)H NMR (250 MHz, CDCl\(_3\), δppm): 1.00-0.93- (2d, J= 9Hz, 6H, 2CH\(_3\)), 2.48 (m, 1H, CH- (CH\(_3\))\(_2\)), 4.30 (m, 2H, CH\(_2\)-CH\(_2\)), 4.20 (m, 1H, CH\(_2\)), 4.60 (s, 2H, CH\(_2\)-Cl).\(^{13}\)C NMR (CDCl\(_3\), δ ppm):
SYNTHESIS OF OXAZOLIDIN-2-ONES PHOSPHONATES

Vol. 5 | No.4 | 450-455 | October-December | 2012

Sotoud Ouarna et al.
Cytotoxicity
The cellular growth constitutes the basic criteria that can make from an organism a model of survey22. Growth of microorganism can be quantified by increase of the size, the weight or the number. Nevertheless, there are several agents limiting this important criterion. *Paramecium sp* are unicellular ciliate, there is an efficient biological alternative model used to study environmental qualities and toxic effects of industrial, agricultural, in genetic, physiologic and morphologic study. The cytotoxicity of synthesized molecules (2d and 3c) was evaluated on the unicellular protist. Toxic study was determined by the kinetics growth. Protistes sciliates were used in the evaluation of cytotoxic effects of xenobiotic they can be performed using different parameters.

Cell culture and treatment
The culture medium of paramecium was performed according to the method of Rouabhi et al22. Xenobiotics 2d and 3c was tested in aliquots 100 ml of culture (medium with and without aceton), three concentrations were chosen: 50, 100 and 200 μM.

Kinetics of Growth
Kinetics growth of paramecium is realised by spectrophotometry at $\lambda = 600\text{nm}$.

The Fig.-1 represents the variation of Optical Density of molecule 2d at 50 μM, 100 μM and 200 μM after 72h of treatment. Cells cultures exposed at 50 μM illustrate a similar cell growth to that control and control acetone OD = 0.307nm. Treated cell with 100 and 200 μM showed an important decrease of growth.

Treatment of *Paramecium sp* with molecule 3c at concentrations 50, 100 and 200 μM, (Figure 2) showed a decrease in the growth of cells up 3 days at different concentrations. 3c compound has an inhibitory effect on the population density growth of protistes.
CONCLUSION
In summary, four novel oxazolidinon-2-ones containing phosphonate moiety (3a-3d) have been synthesized in moderate yield. The synthesis has been performed easily starting from the precursor compounds, chloroacetyl-oxazolidin-2-one (2a-2d) and triethyl phosphite using Michaelis-Arbusov reaction. The cytotoxicity of synthesized molecules (2d and 3c) showed promising results. The results suggest that the 2d and 3c molecules have a low cytotoxic effect on the studied cells, the high concentration of 2d, 3c could constitute excellent potentially cytotoxic agents, in particularly in antitumor therapy. The study is extended to modified oxazolin-2-one-phosphonates, these compounds are currently being evaluated for antimicrobial activity, and the results of these investigations will be reported in due course.

ACKNOWLEDGEMENTS
This work was generously supported by the General Directorate for Scientific Research and Technological Development (DG-RSDT), Algerian Ministry of Scientific Research. (FNR), National Fund of Research. Fruitful discussions with Dr. Ibrahim-Ouali Malika, Aix Marseille university.

REFERENCES
SYNTHESIS OF OXAZOLIDIN-2-ONES PHOSPHONATES

