PREPARATION AND CHARACTERIZATION OF CuInSe$_2$ NANO-PARTICLES

Purushotham Endla
Department of Physics, S R Engineering College (Autonomous),
Warangal-506 371(Telangana) India.
*E-mail: psm45456@gmail.com

ABSTRACT
CuInSe$_2$ synthesized by a modified solvothermal route could be altered considerably by controlling the reaction temperature, reaction time and washing agents. Synthesized CuInSe$_2$ powders were characterized by X-ray diffraction. The thermal properties of lattice strain (ε), particle size (t), lattice parameters (a, c) and Debye-Waller factor (B) were determined from the half-widths and integrated intensities of the Bragg reflections. CuInSe$_2$ powder was strained by Temperature values 150\degreeC, 160\degreeC, 170\degreeC, 180\degreeC, and 190\degreeC. From a study of X-ray diffractograms recorded at different stages of different temperature values, it is observed that it has a systematic effect on the particle size. The particle shape was spherical when deionized water was used as a washing agent and Particles with the size down to 26.6nm were obtained. When the washing agent changed to ethanol, nano-rods with the diameter ranged from 100 to 200nm and the length of several micrometers were observed in the TEM. The variation of energy of vacancy formation as a function of lattice strain has been studied.

Keywords: X-ray Diffraction, Particle Size, Lattice Strain, Debye-Waller Factor, Vacancy Formation Energy.

INTRODUCTION

Hybrid solar cells based on conjugated polymers and inorganic compounds such as CdSe and CuInSe$_2$ in the form of nano rod had been developed as next-generation solar cells emphasizing the low-cost engineering production$^{1-2}$ and with superior properties for photovoltaic applications and engineering applications.$^{3-4}$ The Debye-Waller factor is an important lattice dynamical property. But it is interesting to study the effect of particle size and lattice strains on the Debye-Waller factors of CuInSe$_2$. There is considerable X-ray work on the Debye-Waller factors of CuInSe$_2$ particles can be synthesized by a solvothermal route.$^{5-6}$ The present work was carried out by the same earlier chemical method and it was successfully modified for preparing the CuInSe$_2$ nano-rods. Crystalline phase and microstructure of CuInSe$_2$ nano-particles were characterized and reported in this paper.

EXPERIMENTAL

CuInSe$_2$ particles were synthesized by a modified solvothermal route using a mixture of Se powder (2.59 mmol, 99.9% purity), CuCl$_2$2H$_2$O (1.26 mmol) and InCl$_3$.4H$_2$O (1.29 mmol). The reagents were loaded into a 60 ml Teflon beaker and filled with anhydrous ethylenediamine as chelating agent up to 80% of the total volume. The chemical solution was stirred by a magnetic bar for 2 hours. After mixing thoroughly, the Teflon beaker was then sealed in a stainless steel container and heated in an oven at a temperature ranged from 150 to 200\degreeC for at least 15 hours. It was subsequently cooled to room temperature, the precipitate was then filtered and washed with absolute ethanol and distilled water several times in order to remove by-products. Finally, CuInSe$_2$ powder in black color was obtained after drying in an oven at 60\degreeC for 3 hours. We also used diethylamine as a chelating agent in our experiments. Unfortunately, it caused the formation of second phases such as InSe and In$_2$Se$_3$ in the final product. Thus, we normally use anhydrous ethylenediamine due to its capability to produce single-phase CuInSe$_2$ with higher purity and smaller particle size. X-ray diffraagrams were obtained with a Philips CWU 3710 X-ray powder
The X-ray diffractometer was used to scan the 2θ range 20\(^\circ\) to 120\(^\circ\) with CuK\(\alpha\) filtered radiation at a goniometer speed of 0.5\(^\circ\) per minute and a chart speed of 20 mm/min. All measurements were made at room temperature. The XRD patterns of CuInSe\(_2\) powder are shown in Figure 1 at temperature 150\(^\circ\)C. The observed integrated intensities have been corrected for thermal diffuse scattering using the method of Chipman and Paskin.

RESULTS AND DISCUSSION

The procedure for the determination of directional mean-square amplitudes of vibration \(<u_{\parallel}^2>\) and \(<u_{\perp}^2>\) from the intensity data and the estimation of associated errors is as discussed by Gopi Krishna et al. The average mean square amplitude \(<u_{av}^2>\) can be obtained from the relation,

\[
<u_{av}^2> = \frac{1}{3} (<u_{\parallel}^2> + 2 <u_{\perp}^2>)
\]

and the directional Debye-Waller factors \(B_{\parallel}\) and \(B_{\perp}\) were obtained from the equations

\[
\begin{align*}
B_{\parallel} &= 8\pi^2 <u_{\parallel}^2> \\
B_{\perp} &= 8\pi^2 <u_{\perp}^2>
\end{align*}
\]

The mean Debye-Waller factor \(B\) is given by

\[
B = \frac{2B_{\parallel} + B_{\perp}}{3}
\]

The directional Debye temperatures \(\theta_{\parallel}\), \(\theta_{\perp}\) and mean Debye temperature \(\theta_{M}\) were obtained from \(B_{\parallel}\), \(B_{\perp}\) and \(B\), respectively using the Debye-Waller theory relation,

\[
\begin{align*}
B_{\parallel} &= \frac{6h^2}{M k_B \theta_{\parallel}} W(X) \\
B_{\perp} &= \frac{6h^2}{M k_B \theta_{\perp}} W(X) \\
B &= \frac{6h^2}{M k_B \theta_{M}} W(X)
\end{align*}
\]

Where \(h\) is the Planck’s constant, \(k_B\) the Boltzmann constant, \(M\) the atomic weight. The function \(W(X)\) is given by

\[
W(X) = \left[\frac{\phi(X)}{X} + \frac{1}{4} \right]
\]

Where \(X = \theta_{M}/T\), \(T\) is the temperature of the crystal and \(\phi(X)\) is the Debye function. The values of \(W(X)\) for a wide range of \(X\) can be obtained from standard tables.

Lattice Strain and Particle Size Determination

When the size of the individual crystals is less than about 100nm the term “particle size” is usually used. When the crystallites of material are smaller than 100nm, they have too small a number of parallel diffraction planes and so they produce broadened diffraction peaks instead of a sharp peak. Lattice strain present in the sample is another cause of broadening of Bragg diffraction peaks. In addition to this, there are instrumental factors such as unresolved \(\alpha_1\) and \(\alpha_2\) peaks, imperfect focusing which lead to the line broadening. There are various methods in practice to estimate the particle size. X-ray diffraction is a simpler and easier approach for the determination of precise particle size and the lattice strain in powder samples. The principle involved in the X-ray diffraction approach is precise quantification of the broadening of the Bragg diffraction peaks. Scherrer equation, Hall-Williamson method, and Warren-Averbach method are some of the techniques based on this principle. Of the above methods, the Scherrer equation method for the estimation of particle size does not take into account the broadening due to lattice strain present in the sample. As such in the present investigation, the lattice strains have been estimated using Hall-Williamson method. Recently, Bharati et al. have used this method to estimate the lattice strain and particle sizes of silver nanoparticles and composite silver nanoparticles. In this method the integral breadth of the diffraction peak is determined. The integral breadth is given by the integrated intensity divided by the maximum intensity. Thus, the observed peak broadening \(B_o\) may be represented as:

\[
B_o = B_i + B_r
\]

Where \(B_o\) is the observed peak broadening in radians, \(B_i\) is the instrumental broadening in radians and \(B_r\) is the broadening due to the small particle size and lattice strain. The instrumental broadening has been estimated using a pure strain-free fine sodium chloride powder sample subjected to XRD under identical conditions as those for the strained metallic powders. Eq. (5) holds good if the diffraction peaks exhibit purely Cauchy profile. However, when the diffraction peaks are partly Cauchy and partly Gaussian for profiles, the following relation between \(B_o, B_i\) and \(B_r\) holds good, Bharati et al.
\[B_c = \frac{K\lambda}{t}\cos\theta \]

(7)

Where \(B_c \) is the broadening solely due to small crystallite size, \(K \) a constant whose value depends on particle shape and usually taken as unity, \(t \) the crystallite size in nanometers, \(\theta \) the Bragg angle and \(\lambda \) is the wavelength of the incident X-ray beam in nanometers. Similarly, according to Wilson\(^1\), the broadening due to lattice strain may be expressed by the relation,

\[B_s = \epsilon \tan\theta \]

(8)

where \(B_s \) is the peak broadening due to lattice strain and \(\epsilon \) the strain distribution within the material and \(\theta \) is the Bragg angle. Based on Eqs. (7) and (8) the total peak broadening \(B_t \) may be expressed as:

\[B_t = \frac{k\lambda}{t\cos\theta} + \epsilon \tan\theta \]

(9)

Which can be written as:

\[B_t \cos\theta = \frac{k\lambda}{t} + \epsilon \sin\theta \]

(10)

The plot of \(B_t \cos\theta/\lambda \) versus \(\sin\theta/\lambda \) is a straight line with slope equal to \(\epsilon \) and hence the particle size ‘\(t \)’ can be estimated from the intercept. Typical Hall-Williamson plot between \(B_t \cos\theta/\lambda \) and \(\sin\theta/\lambda \) is shown in Fig.-2.

\[\text{Fig.-1: X- Ray Diffraction Pattern of CuInSe}_2 \text{ for (a) 150 °C, (b) 160 °C, (c) 170 °C, (d) 180 °C, (e) 190 °C and (f) 200 °C} \]

\[\text{Fig.-2: Plot of } B_t \cos\theta/\lambda \text{ Vs } \sin\theta/\lambda \text{ for CuInSe}_2 \text{ at the Temperature 180 °C.} \]
The lattice strains were determined from the plot of $B_r \cos \theta / \lambda$ against $\sin \theta / \lambda$ following standard procedures. The measured half-widths were corrected for instrumental broadening with reference to a pure strain-free silicon powder. The variation of particle size with milling time is within the limits of experimental errors. This shows that while the milling is enough to create strains, it affects the particle size to a measurable extent. A typical Hall-Williamson plot is shown in Fig.-2. CuInSe$_2$ at the temperature 180º C.

The values of the particle size, lattice strain, root mean square amplitude of vibrations, Debye-Waller factor and Debye temperature of CuInSe$_2$ powders, ground for different durations, obtained in the present study are given in Table-1. Although values of Deby-Waller factor, the amplitude of vibration and Debye temperature in the ‘a’ and ‘c’ directions have been determined separately, the average values of these quantities are given in Table-1. As the objective of the present work is to investigate the strain dependence of Debye-Waller factors. Debye-Waller factor Mg powder sample carries an effect due to lattice strain. While comparing the Debye-Waller factors calculated from the lattice dynamical models with experimental results Vetelino et al14 have attributed the difference to inaccuracies in the experimental values caused by neglecting the TDS corrections. The repeated milling of the powder sample leads to lattice distortion which gives rise to microstrains in the lattice. These microstrains increase the contribution of the static component of the Debye-Waller factor. Thus both lattice strain and the observed Debye-Waller factor, which is the sum of static and thermal components, increase with grinding time. Thus, whenever Debye-Waller factors are determined from X-ray intensities on powder samples, it is desirable, to make an estimate of the lattice strain and if the strain is large, a suitable correction is to be made as in the present study.

Glyde15 derived the following relation between the energy of vacancy formation (E_v) and the Debye temperature (Θ) of a solid. The relation is:

$$E_v = A(k/\hbar)^2 M \Theta^2 a^2$$ \hspace{1cm} (11)

Where a is the interatomic spacing, A a constant shown to be equal to 1.17 x 10$^{-2}$, M the molecular weight and k and \hbar are the Plank’s and the Boltzmann’s constants, respectively. Glyde recommended the use of X-ray based values in eq. (11). The validity of eq.(11) was verified for a number of fcc,bcc and hcp metals.16 Therefore, the X-ray Debye temperatures obtained in the present work have been used to study the variation of vacancy formation energy as a function of lattice strain in CuInSe$_2$. The values of vacancy formation energies are also included in Table-1.
Table-1: Values of Particle Size (t), Lattice Strain (ε), Mean Debye-Waller Factor (B), Amplitudes of Vibration <u>, Debye Temperature (θ_M) and Energy of Vacancy Formation (E_f) of CuInSe_2 Nano Powder.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature (°c)</th>
<th>ε x 10^3</th>
<th>t (nm)</th>
<th>a (nm)</th>
<th>ε (nm)</th>
<th><u> (Å)</th>
<th>B (Å^2)</th>
<th>θ_M (K)</th>
<th>E_f (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuInSe_2</td>
<td>150</td>
<td>1.12</td>
<td>49.8</td>
<td>0.5843</td>
<td>1.1583</td>
<td>0.00175</td>
<td>0.1382</td>
<td>275</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>1.18</td>
<td>38.4</td>
<td>0.5892</td>
<td>1.1526</td>
<td>0.00177</td>
<td>0.1396</td>
<td>273</td>
<td>1.66</td>
</tr>
<tr>
<td></td>
<td>170</td>
<td>1.2</td>
<td>36.2</td>
<td>0.5885</td>
<td>1.1532</td>
<td>0.00179</td>
<td>0.1415</td>
<td>271</td>
<td>1.87</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>1.26</td>
<td>39.4</td>
<td>0.5884</td>
<td>1.1515</td>
<td>0.00186</td>
<td>0.1468</td>
<td>266</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>1.31</td>
<td>28.3</td>
<td>0.5894</td>
<td>1.1521</td>
<td>0.00194</td>
<td>0.1532</td>
<td>260</td>
<td>2.42</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>1.38</td>
<td>26.6</td>
<td>0.5895</td>
<td>1.1521</td>
<td>0.00205</td>
<td>0.1621</td>
<td>253</td>
<td>2.83</td>
</tr>
</tbody>
</table>

CONCLUSION
CuInSe_2 powder was strained by Temperature values 150 °c, 160 °c, 170 °c, 180 °c, and 190 °c. From a study of X-ray diffractograms recorded at different stages of different temperature values, it is observed that it has a systematic effect on the particle size. However, the increasing temperature produces lattice strain and also enhances the effective Debye-Waller factor. The variation of energy of vacancy formation as a function of lattice strain has been studied.

REFERENCES
4. V. Ashok Kumar, P. Sammaiah, Science Direct Materials Today, 1, 7(2017), DOI:10.1016/j.matpr.2018.08.059
10. A. J. C. Wilson, X-ray Optics (Methuen, London), (1949)

[RJC-5132/2019]